
Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 1

PV-260 Serial board Encode System Programmer Manual
（FOR Linux）

（2005-1-13 Release version 2.2）
PV-260 video and audio compression card is a special production, which is designed for digital

surveillance market. It uses high-performance Video compression of H.264 standard with OggVorbis
Audio coding algorithm to accurately achieve video and audio Real-time coding (CIF 25 f/s PAL or 30
f/s NTSC) based on hardware completely. It also has the function such as dynamic bit rate, controllable
frame rate, frame mode, dynamic image quality control, and real-time audio preview and alarming on
Video signal loss, and can adjust any channel’s parameters independently with stable and reliable
performance. Compared with MPEG-I products, it can greatly save storage space and more suitable for
broadband or narrowband network transmission with the same image quality, so it is one of the best
choices for digital surveillance products.

The SDK of PV-260 series card is made up of encode system SDK, network SDK and player SDK.
This manual especially describes encode system SDK, as to the other SDK you can refer to the relevant
documents. Encode system SDK is the local record software interface program, which is designed for
one or multiple channel boards of this series, to provide for internet application developers in the form
of dynamic data base. It also has Demo (H.264 Demo Version4.0) and corresponding source code,
which can effectively decrease the period of development applications.

When using, software developer should especially notice that they can modify all the parameters
like resolution, stream code, frame structure except the stream code (complex stream, video stream).
Namely, it can transform frame rate (SetIBPMode(…)) and quantization coefficient(SetDefaultQuant)
in the course of compression, while no need of stopping or starting compression but still within a file
record. The player can automatically identify parameters such as frame rate and can play normally
according to current compressed frame rate.

Compressed bit rate can be controlled by dynamically modifying the quantization coefficient(I、
B、P). If the bit rate is too high, increase the coefficient; whereas, decrease it. Certainly, the
coefficient doesn’t need to be decreased if enough.

Moving detection of PV-260 series compression card is independent from compression. It can be
done without compression. It is valuable that the frame rate can be transformed. When moving, record
as high frame rate (25 F/S); whereas, record as low frame rate. Recording in the same file can greatly
save hard disk space.

SetLogo(…) not only can be used as LOGO but also to envelop some image area.

Compared with PV-240、245 & 250 generated in the early period, the main characters of PV-260
(4.0 version) are as following:
1. Compared with PV-240, compressed bit rate reduced by more than 30% on the premise of keeping

the same image quality. In the typical circumstances such as in the office, frame rate is only
20-120kbps.

2. Provide quite accurate bit rate control mode, can output the appointed bit rate under any
circumstances and CBR control mode is added.

3. Adopt the new video collecting processing chip, which can greatly decrease such phenomenon as
image distortion, background strolling because of noise from video camera.

4. Use G.722 audio compressed algorithm, vocality is smoother.
5. Will support high resolution ratio 4CIF (704*576) video compression function.

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 2

6. New add screen MASK function, support max 32 regions
7. The setting of the relative coordinate (OSD, LOGO MASK motion detection etc.) has been unified

as 704*576, no matter what kind of encoding format
8. The preview manner is changed. Realized overlay preview using SDL library. Multiple channel

preview will consume more CPU load.
SDK interface is completely the same as those of PV-240、245 & 250 serial boards and more
functions are added. Developed internet applications can be migrated very fast.

Note: . Reboot your computer after the driver installed.
 . Demo program included in our SDK must run on XWINDOW.

1. Definition and description for error code using in this SDK:

Error code Explanation
ErrorCodeDSPUninit DSP not initialed
ErrorCodeDSPNotReady DSPnot ready
ErrorCodeDSPLoadFail DSP load fail
ErrorCodeEncodeChannelOverflow Encode channel number overflow
ErrorCodeDecodeChannelOverflow Decode channel number overflow
ErrorCodeBoardOverflow Board number overflow
ErrorCodeDSPHexBlockLenOverflow DSP program length overflow
ErrorCodeDSPProgramCheckoutFail DSP program checkout fail
ErrorCodeDSPInitRecheckFail Check DSP program fail
ErrorCodeDSPBusy DSP busy
ErrorCodeNoCardInstalled No cards installed
ErrorCodeMemLocateFail Allocate memory failed
ErrorCodeDuplicateSN Duplicate serial number
ErrorCodeDSPCmdInvalid Invalid DSP command
ErrorCodeChannelOutofRange Invalid channel number
ErrorCodeInvalidEncodeChannel Invalid encode channel number
ErrorCodeInvalidArgument Invalid argument
ErrorCodeNotSupport This function not supported
ErrorCodeCreateYUVOverlayFail Create YUV surface failed

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 3

2. Definitions for data types:
2.1 video preview output formats:

vdfRGB16 16 bits RGB video preview format
vdfRGB24 24 bits RGB video preview format
vdfYUV422Planar YUV422 video preview format

2.2 definitions for frame types
 PktError illegal frame data

PktSysHeader System header
 PktIFrames I frame
 PktPFrames P frame
 PktBBPFrames BBP frame

 PktAudioFrames Audio frame
 PktMotionDetection Motion detection frame
 PktSFrames Frame types transferred during capturing I frame
 PktSubIFrames: when in double decoding, I frame in subchannel
 PktSubPFrames: when in double encoding, P frame in subchannel
 PktSubBBPFrames: when in double encoding, BBP frame in subchannel

 PktSubSysHeader: when in double encoding, system header in subchannel

 2.3 definitions for video standard
 StandardNone No video signal

StandardNTSC NTSC format
StandardPAL PAL format

3. Definition for data structure
3.1 definition for extraordinary ability

typedef struct tagChannelCapability{
 UCHAR bAudioPreview; Audio preview
 UCHAR bAlarmIO; Alarming signal
 UCHAR bWatchDog; Watch dog
}CHANNEL_CAPABILITY, *PCHANNEL_CAPABILITY;

3.2 frame data Stat.

typedef struct tagFramsStatistics{
 ULONG VideoFrames; Video frame

ULONG AudioFrames; Audio frame
ULONG FramesLost; Lost frame
ULONG QueueOverflow; Buffer overflow

}FRAMES_STATISTICS, *PFRAMES_STATISTICS;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 4

3.3 edition information
typedef struct tagVersion{
 ULONG DspVersion, DspBuildNum; DSP edition and BUILD mark
 ULONG DriverVersion, DriverBuildNum; Drive edition and BUILD mark
 ULONG SDKVersion, SDKBuildNum; SDK edition and BUILD mark
}VERSION_INFO, *PVERSION_INFO;

3.4 definition of motion detection data
 PV-260 serial boards offer motion intensity information to deal with motion detection.
When setting the motion detection areas, use 32x32as one unit, resolution using 4CIF
(704x5760) there re 22 blots in one row (704/32). There are 18 lines (576/32) when in PAL
format, 15 lines (480/32) in NTSC format, no matter what kind of encoding format. Through
the test, using this way the sensibility and the reliability have been developed compared with
the H serial board, and simplify the return data. The value of return is 18 DWORD, the
corresponding height of the screen is 576/32=18 lines (in PAL). The corresponding width of
0-21 unit of the DWORD is 704/32=22 rows. Among them, 1 means motion and o still, and
can also call the original analyses result of MotionAnalyzer().

4. Definition of functions
4.1 int InitDSPs();

Explanation: This function initializes every board and must be finished before any other operation
to be done. If the returned value is 0 means initialization is failed, the reasons
perhaps is failed in finding related DSP software module or no board is installed.
Its related function is DeInitDSPs() ;

Return value: 0 - initialization DSP failed
 >0 – number of successfully initialization DSP

4.2 int DeInitDSPs();

Explanation: To close the functions in every board and must be called before exiting application;
Return value: 0 – close DSP success.

4.3 int ChannelOpen(int ChannelNum, STREAM_READ_CALLBACK streamReadCallback);
Parameter : int ChannelNum: // channel no (0-n)

STREAM_READ_CALLBACK StreamReadCallBack: //function pointer
of stream data treated callback function(see 5.1 section)

Explanation: Open channels and get operation handles. All operations related with this channel

must use this handle;
Return value: >0 - valid handle,

-1 – fopen channel fail

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 5

4.4 int ChannelClose(int channelHandle) ;
Parameter: int channelHandle channel handle;
Explanation: close channel and release relative resource;
Return value: 0 – success

-1 - fail

4.5 int GetTotalChannels();
 Explanation: Get total valid channel number in system.

Return value: If return value is less than the number of channels installed in system, it is
means that those initializations of DSP are failed.

4.6 int GetTotalDSPs();
Explanation: Get the number of DSP in system.
Return value: If return value is less than the number of DSP installed system, it is means those

some initializations of DSP are failed.

4.7 int StartVideoPreview(int channelHandle, SDL_Surface *display, SDL_Rect dstRect);
Parameter: int channelHandle channel handle;

 SDL_Surface *display SDL suface, preview picture will displayed o it.
 SDL_Rect dstRect rectangle area in SDL suface;

Explanation: Start video preview. Adopting the preview mode by SDL overlay. Displaying
multiple preview pictures must disable hardware acceleration, or pictures will
twinkle.

putenv("SDL_VIDEO_YUV_HWACCEL=0"). Suggest that CPU is higher
than 2GHz with stable system.

Return value: 0 – success;
-1 - fail;

4.8 int StopVideoPreview(int channelHandle);

Parameter: int channelInfo channel handle;
Explanation: Stop video preview;
Return value: 0 – success;

-1 - fail;

4.9 int SetVideoPara(int channelHandle, int Brightness, int Contrast, int Saturation, int Hue);
Parameter: int channelHandle channel handle;
 int Brightness value of brightness (0--255);
 int Contrast value of Contrast (0--127);
 int Saturation value of Saturation (0--127);
 int Hue value of Hue (0--255);
Explanation: set video parameters;
Return value: 0 - success;

-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 6

4.10 int GetVideoPara(int channelHandle, VideoStandard_t *VideoStandard, int *Brightness, int
*Contrast, int *Saturation, int *Hue);

Parameter: int channelHandle window handle;
 VideoStandard_t *VideoStandard video format (refer to section 2.3);

 int *Brightness pointer of Brightness value (0--255);
 int *Contrast pointer of Contrast value (0--127);
 int *Saturation pointer of Saturation value (0--127);
 int *Hue pointer of Hue value (0--255);
 Explanation: To get video parameter

Return value: 0 – success;
-1 - fail;

4.11 void GetSDKVersion (PVERSION_INFO VersionInfo);

Parameter: PVERSION_INFO VersionInfo pointer of VERSION_INFO;
Explanation: get the SDK version used currently. It is consist of 16 bits BCD code , the high 8

bits means major version ,the back 8 bits means senior version , and the following 32
bits means BUILD number which indicating the time that the SDK is modified latest;

4.12 int GetCapability (int channelHandle, CHANNEL_CAPABILITY *Capability);
 Parameter: int channelHandle channel handle
 CHANNEL_CAPABILITY *Capability refer to section 3.1
 Explanation: To get the information of special function of the board;

Return value: 0 – success;
-1 - fail;

4.13 int GetLastErrorNum();

Explanation: Get the last error information for SDK;
Return value: return error num (consult the definition for error code using in this SDK)

4.14 int SetStreamType (int channelHandle, int Type);
Parameter: int channelHandle channel handle
 int Type stream type, see the macro definition as follows:
 Macro definition:
 #define STREAM_TYPE_VIDEO 1 //video stream
 #define STREAM_TYPE_AUDIO 2 //audio stream
 #define STREAM_TYPE_AVSYNC 3 //video&audio synchronous stream
Explanation: Set stream type;
Return value: 0 – success;

-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 7

4.15 GetStreamType(int channelHandle, int *StreamType);
Parameter: int channelHandle channel handle

int *StreamType point to the stream type
Explanation: To get stream type;
Return value: 0 – success;

-1 - fail;

4.16 int GetFramesStatistics(int channelHandle, PFRAMES_STATISTICS framesStatistics);
Parameter: int channelHandle channel handle
 PFRAMES_STATISTICS ramesStatistics statistic information of frame

 PFRAMES_STATISTICS frame structure
Explanation: get statistic information of frame;
Return value: 0 – success;

-1 - fail;

4.17 int SetupMotionDetection(int channelHandle, RECT *rectList, int numberOfAreas) ;
Parameter: int channelHandle channel handle
 RECT *rectList rectangle array
 int numberOfAreas number of rectangle
Explanation: Set motion detection areas. When receive the data frame of marcblock ’s

movement information (PktMotion Detection), call function MotionAnalyzer
which can analyze every needed detection areas that is set by
SetupMotionDetection. If the threshold of some areas (iThreshold in
MotionAnalyzer function) is reached, the finally result will be marked in
returned array (iResult in MotionAnalyze function); the rectangle range of
PV-260 is (0,0,703,575).

Return value: 0 – success;
-1 - fail;

 4.18 int StartMotionDetection(int channelHandle);
Parameter : int channelHandle channel handle
Explanation: To startup motion detection. Motion detection information can be transmitted by

data stream. When we find the frame type is PktMotionDetection we can use
MotionAnalyze function to analyze the movement information, and the result
is returned by parameter iResult in MotionAnalyzer. We can also analyze by
ourselves according to the data format given by the SDK refer to section 3.4
and 3.5 for the motion information format;
Notes: Motion detection and the encoding are independent from each other;

the user program can run motion detection under the condition of no running
encoding program.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 8

4.19 int GetBoardInfo(int channelHandle, int *BoardType, int *SerialNo);
Parameter: int channelHandle channel handle

 Int *BoardType PV-260 is 2
 char *SerialNo ID number of card: content is ASCII number of

card sequence, SerialNo[0] corresponding to the
highest, SerialNo[11] corresponding to the lowest.
For instance: “４００００１００２３４５”
corresponding to array 4,0,0,0,1,0,0,2,3,4,5.

Explanation: To get hardware information of board
Return value: 0 – success;

-1 - fail;

4.20 int StopMotionDetection (int channelHandle);
Parameter: int channelHandle channel handle
Explanation: stop motion detection;
Return value: 0 – success;

-1 - fail;

4.21 int StartVideoCapture(int channelHandle);
Parameter: int channelHandle channel handle
Explanation: To startup video capture. The users’ program can process the data stream directly

by using callback parameter of StreamDirect ReadCallback. Or you ca do it just
like H serial boards that is: user ’s program to read the data stream using
ReadStreamData after knowing the registered message sending to the user ’s
program RegisterMeddageNotifyHandle by SDK.

Return value: 0 – success;
-1 - fail;

4.22 int StopVideoCapture(int channelHandle);

Parameter: int channelHandle channel handle
Explanation: stop data intercept;
Return value: 0 – success;

-1 - fail;

4.23 int SetIBPMode(int channelHandle, int KeyFrameIntervals, int BFrames, int PFrames, int
FrameRate);

Parameter: int channelHandle channel handle
 int KeyFrameIntervals key frame interval (default is 100)
 int Bframes number of B frame (default is 2)
 int Pframes number of P frame
 int FrameRate frame ratio (default is 25)
Explanation: To set frame structure, key frame interval, number of B frame and frame rate. The

value of key frame interval can be not less than 12 , number of B frame can be 0,
1,2 , number of P frame is set invalid at present, the range of frame rate is from 1

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 9

to 25 , and these value can be set during capturing ;
 Note: Explanation of key frame interval: Key Frame is the image frame, which is

compressed within fames in the encoding stream. Its characters are the good image
definition while needing big data capacity, and usually used as the original reference
of frames interval encoding. Key frame interval is the numbers of the frames between
the continuous frames encoding.

Return value: 0 – success;
-1 - fail;

4.24 int SetDefaultQuant(int channelHandle, int IQuantVal, int PQuantVal, int BQuantVal);
Parameter : int channelHandle channel handle
 int IquantVal I frame quantization parameters
 int PquantVal P frame quantization parameters
 int BQuantVal B frame quantization parameters
Explanation : to set video encode quantization parameters. It is used in adjusting image quality,

a simple rule is that lower quantization will produce higher quality image, and
its range is from 12 to 30. For example: 15, 15, 20 and 18, 18, 23. The default of
system is 18, 18, 23; The normal rules is the I frame and P frame is set as the
same, while Bframe is 3 to 5 bigger than them.

Note: Explanation of quantitative coefficient: quantitative coefficient is the parameter, which greatly
affects the encoding, image quality and bit rate under MPEG standard. The lower the quantitative
coefficient is the better the quality and the higher the bit rate. On the contrary, the worse the
quality is and the lower the bit rate.
Return value: 0 – success;

-1 - fail;

4.25 int SetOsd(int channelHandle, int Enable);
Parameter: int channelHandle channel handle
 int Enable enables
Explanation: Set OSD (Overlay String Display) mode. It can make the currently system time

(such as year, month, day, hour, minute and second) or custom string overlay
with the real-time active video window, translucent processing is also permitted.

Return value: 0 – success;
-1 - fail;

4.26 int SetAudioPreview(int channelHandle, int bEnable);

Parameter : int channelHandle channel handle
 int bEnable enable
Explanation: To set audio preview. There is only 1 channel of all the audio inputs to the cards

selected outputting to sound board.
Return value: 0 – success;

-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 10

4.27 int SetLogo(int channelHandle, int x, int y, int w, int h, unsigned char *yuv);
Parameter : int channelHandle channel handle
 int x top left corner position x(0-703)
 int y top left corner position y (0-575)
 int w width (0-128) (the size of it must be the same

as the width of the original image)
 int h height (0-128)
 unsigned char *yuv image pointer of YUV format(YUV422planar)
Explanation: To set the position and data of OSD screen image. User program can call the

function LoadYUVFromBmpFile to get YUV data from 24-bits color bmp file (refer
to section 4.31). And translucent processing is performed by DSP.

Return value: 0 – success;
-1 - fail;

4.28 int StopLogo(int channelHandle);
Parameter: int channelHandle channel handle
Explanation: To stop OSD display;
Return value: 0 – success;

-1 - fail;

4.29 int LoadYUVFromBmpFile(char *FileName, unsigned char *yuv, int BufLen, int *Width, int
*Height);
Parameter : char *FileName file name

 unsigned char *yuv image pointer of YUV format
 int BufLen size of YUV buffer
 int *Width width returned by YUV image
 int *Height height returned by YUV image

Explanation : To transfer the 24 bits bmp file to YUV format data, among them the width and
length of the BMP should be the multiple of 16m, and the max support 128*128
pels.

Return value: 0 – success;
-1 - fail;

4.30 int SaveYUVToBmpFile(char *FileName, unsigned char *yuv, int Width, int Height);

Parameter : char *FileName file name
 unsigned char *yuv image pointer of YUV format
 int Width width of YUV image
 int Height height of YUV image
Explanation : To transfer the YUV image to BMP file. If it is PV-260 to capture, the Width is 704,

Height is 576 (in PAL) or 480(in NTSC); if it is PV-245 & 250, the Width perhaps is
352 or 176, and Height is 288, 240, 144 or 120. It can be judged according to the size of
the buffer.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 11

4.31 int GetOriginalImage(int channelHandle, unsigned char *ImageBuf, int *Size);
Parameter : int channelHandle channel handle
 unsigned char*ImageBuf pointer of original image
 int *Size size of original image (before calling it, it is

the size of imagebuf, but after calling it, it is
the byte factually used)

Explanation: To get the original image. The original image of PV-260 is the standard 4CIF
format (including QCIF encoding), the user program can call SaveYUVToBmpFile
to create 24 byte bmp file. While the original image of PV-245 & 250 is CIF image
format.

Return value: 0 – success;
-1 - fail;

4.32 int GetVideoSignal(int channelHandle);

Parameter : int channelHandle channel handle
Explanation : To get the information of connect video signal . It can used in alarming for

video loss;
Return value : 1 - no video signal
 0 - valid video signal
 -1 – invalid parameter

4.33 int MotionAnalyzer(int channelHandle, char *MotionData, int iThreshold， int *iResult);
Parameter: int channelHandle channel handle;
 char *MotionData pointer of motion vector;
 int iThreshold bound of area used in judging movement (0-100);

int *iResult It is the result of motion detection according to
the bound of area , and it is a array which size is
set with parameter numberOfArea in the
function SetupMotionDetection . If the value of
some areas is greater than 0 then it is means that
there is movement in this area.

Explanation: Analyze motion detection. Motion detection is performed by DSP. The
Frame of pktMotionData given out by DSP is the motion information has been
analyzed. The movement of areas is performed by Host computer, and the data
source is given by frame of PktMotionData (refer to Ondata Ready part of
Demo data source), and the result is filled in parameter of iResult. The 2.0
version’s motion analysis is based on the motion intensity provided by DSP
but not using motion vector any more. The sensibility and reliability is
progressed greatly, the user’s software can analyze by itself through the
information of motion intensity provided by code stream or the bound analyze
calling this function. The data structure of motion intensity is explained in 3.4;

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 12

4.34 int AdjustMotionDetectPrecision (int channelHandle, int iGrade, int iFastMotionDetectFps, int
iSlowMotionDetectFps);
Parameter: int channelHandle channel handle

 iGrade sensitiveness grade of motion analysis (0-6)
 int iFastMotionDetectFps frame interval of high speed motion detection

(0-12) , the value 0 is means there is no need
of high motion detection and usually it is 2

 int iSlowMotionDetectFps frame interval of low speed motion detection
(>13) , the value of 0 is means there is no
need of low speed motion detection

Explanation: To adjust motion synthesize sensitiveness, and can adjust the sensitiveness of
motion detection dynamically during encoding. It also decides the sensitiveness of
whole DSP motion synthesizes. It is different from the parameter iThreshold of
MotionAnalyze function, the latter mainly used in analyzing some area ’s motion by host
computer. The grade 0 is the most sensitive and grade 6 is the most insensitive. The
recommended value is 2;

Return value: 0 – success;
-1 - fail;

4.35 int CaptureIFrame(int channelHandle);
Parameter: int channelHandle channel handle
Explanation: Force the current frame encode as I frame. We can read this I frame from

data stream and used in the internet transmission independently.
Return value: 0 – success;

-1 - fail;

4.36 int SetEncoderPictureFormat(int channelHandle, PictureForamt_t PictureFormat) ;

Parameter: int channelHandle channel handle
 PictureForamt_t PictureFormat size of coding image

(4CIF, 2CIF,CIF, QCIF CIFQ and
CIFQCIF)

Explanation: Set the encoding format of the current channel. It must be called after stop
recording.
4CIF format is added into the 1.0 version. PV-260 boards support 4CIF
encoding format. When some channel is set in the CIFQCIF format, there
will be two kinds of data stream: CIF and QCIF sent by DSP after booting
the recording. User program should process separately. The original
encoding format will not be changed. (The resolution of QQCIF is 96*80.)

 User program can also call directly function Set SubEncoderPictureFormat()
to set the encoding format of the sub-channel of some channel. And call the
function StartSbuVideoCapture()/StopSubVideoCapture() to realize the start
and stop of the sub-channel.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 13

4.37 int SetupBitrateControl(int channelHandle, int MaxBps) ;
Parameter: int channelHandle channel handle;

 Int MaxBps the most baud rate (more than 10000)
Explanation: Can be used to set the maximum baud rate. If the parameter of MaxBps is set

to 0 then bit-rate control is closed. When the parameter of MaxBps is set as
certain baud rate, as the encoding data stream exceeds this value, DSP will
automatically adjust encoding parameter not to exceed the max baud rate. While
if the data stream is smaller than the maximum baud rate then DSP don’t bother
it; the adjustable error is <10%;

Return value: 0 – success;
-1 - fail;

4.38 SetLogoDisplayMode(int channelHandle, unsigned short ColorKeyR, unsigned short ColorKeyG,
 unsigned short ColorKeyB, unsigned short bTranslucent, int TwinkleInterval);

Parameter : int channelHandle channel handle;
int ColorKeyR, ColorKeyG,, ColorKeyB

color of LOGO image will be completely
translucent during display

 unsigned short bTranslucent
 Whether do it translucently processing

about LOGO image
int TwinkleInterval Set the time about flash . It can be

expressed by hex 0xXXYY, and XX is
display time and YY is the time of
stopping display. When XX and YY all
are 0 it can display normally

Return value: 0 – success;
-1 - fail;

4.39 SetOsdDisplayMode (int channelHandle, int brightness, int translucent, int twinkInterval,unsigned

short *format1, unsigned short *format2););
Parameter: int channelHandle channel handle

 int Brightness display brightness of OSD , 255 means brightest and
0 means darkest

 int translucent whether translucent when overlay OSD string over
active video.

 Int twinkleInterval when the value is 1, brightness of OSD will be
adjusted according to brightness of background.
When background is too bright, brightness of OSD
will be lower automatically, darker, OSD will be
brighter, and the twinkle function is closed

 unsigned short *Forma1, Format2
Strings overlay to describe the position and
sequence of character, the description about them
as follows:

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 14

USHORT X， USHORT Y， CHAR0， CHAR1， CHAR2，… CHARN, NULL
 X and Y means the initiative position of this string in the normal CIF image, and X must be the

multiple of 16, and Y can be set in the extent of image height: (0-575) PAL, (0-479) NTSC.
CHARN is a parameter of USHORT, it can be ASCII or GB code Characters. When want to
display the current time, you can point it as the fixed constant value, and they are as follows:

 _OSD_YEAR4 show year time by length of 4, for example: 2004
 _OSD_YEAR2 show year time by length of 2, for example: 02
 _OSD_MONTH3 show month time in English, for example: Jan
 _OSD_MONTH2 show month time by two Arabic numerals, for example: 07
 _OSD_DAY show daytime by two Arabic numerals, for example: 31
 _OSD_WEEK3 show week time in English, for example: Tue
 _OSD_CWEEK1 show week time in Chinese GB code, for example: 星期二

_OSD_HOUR24 show 24 hours clock, for example: 18
 _OSD_HOUR12 show 12 hours clock, for example: AM09 or PM09
 _OSD_MINUTE show minute time by length of 2
 _OSD_SECOND show second time by length of 2
Note that we must set NULL in the end of format strings, otherwise there will show some error
contents.

The display of string and time can be set in FORMAT1 or FORMAT2, and they can be mixed
together, but the width of them can not exceed the width of four line CIF image.

The format string about showing the string of ‘Office’ on the position (16,19) as follows:
 unsigned short Format[] = {16, 19, 'O','f','f','i','c','e', ‘\0’};
 The time string showing on the position (8, 3) as follows:
 Unsigned short

Format[]={8,3,_OSD_YEAR4,’:’OSD_MONTH2,’:’,_OSD_HOUR24
,’:’_OSD_MINUTE,’:’,_OSD_SECOND,’\0’};

 If we only want to show one line of them, we can define the format string as follows:
 unsigned short FormatNoDisplay [] = {0, 0, ‘\0’};

4.40 int SetVideoStandard(int channelHandle, VideoStandard_t videoStandard)

Parameter： int channelHandle channel handle;
 VideoStandard_t videoStandard video standard

Remark: To set current video standard to the specified type, it’s is unnecessary to call the
function if we boot the system under the condition that the video camera is
connected. While it is necessary to call this function if we boot the system without
connecting the cameras (after it connects to NTSC format cameras) or we change
the different format cameras in the process.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 15

4.41 int ResetDSP(int dspNumber)
Parameter：int dspNumber index number of DSPs
Remark: To reset some DSP system. Pay attention to be cautious to call this function. After

the confirmation that DSP deadlock or malfunction cannot be restored through the
software, and reset DSP after closed the relevant resources.

4.42 int GetSoundLevel(int channelHandle)

Parameter：int channelHandle channel handle
Remark: To get current audio input level of the current channel. Attention should be paid that

the return value will no be zero even if no audio input is connected due to the
background noise.

Return value: >0 – sound level;
-1 - fail;

4.43 SetBitrateControlMode(int channelHandle, BitrateControlType_t brc)

Parameter：int channelHandle channel handle
BitrateControlType_t brc bitrate control mode, brVBR and br CBR
Remark: This function should be cooperated with SetupBitrateControl function, When

brCBR is Selected and SetBitrateControl is called with specified bitrate, the encode
system will output data bits which will not exceed the limit set by
SetBitrateControl,if the picture quality has already reached then the output bitrate
will be a lower value compared to the bitrate set .If the brCBR is set then the bitrate
will be the value set by SetBitrateControl and the picture quality is adjust
automatically to maintain constant bitrate.

Return value: 0 – success;
-1 - fail;

4.44 int SetupSubChannel(int channelHandle, int iSubChannel);

Parameter: int channelHandle channel handle
int iSubChannel subchannel

Remark: This function should be cooperated with the mode of CIFQCIF and CIFQQCIF.
When the mode of CIFQCIF is selected, the encode of subchannel 0 is CIF and
subchannel 1 is QCIF (QQCIF), we can set some parameters of subchannel 0 and
subchannel 1 respectively. The parameters like Key Frames Intervals, OSD, LOGO,
STREAMTYPE are the same to the 0 or 1 sub channel. This function should be
called to set subchannel 0 and subchannel 1 respectively, when we set these
parameters, such as Quantity Value, bitrate control mode, and value of bitrate. By
default, the setting is for subchannel 0.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 16

4.45 int GetSubChannelStreamType(void *DataBuf, int FrameType);
Parameter: void *Databuf data buffer which will be put in

 int FrameType frame type
Remark: This function should be cooperated with the mode of CIFQCIF and CIFQQCIF.

When the mode of CIFQCIF is selected, the encode of subchannel 0 is CIF and
subchannel 1 is QCIF (QQCIF). When record is started; DSP will deliver two kinds
of data streams, which are CIF and QCIF (QQCIF). We get the type of data stream
after calling of this function, which is only used by application.

Return value: 0 - other data
 1 - File header of CIF data stream
 2 - File header of QCIF (QQCIF) data stream
 3 - Video Frame type of CIF data stream

4 – Video Frame type of QCIF (QQCIF) data stream
5 - Audio Frame

New functions for PV-260 card:
4.46 int Setup Mask(int channelHandle, RECT *rectList, int iAreas

Parameters: int channelHandle channel handle
RECT*rectList rectangle list
Int iAreas the number of the rectangle

Explanation: The functions to boot screen mask provided by PV-260 serial boards. The max
can be set is 32, and the range of the rectangle is (0, 0, 703, 575). The width of
the rectangle is the same as 16, and the height is 8.

Return value: 0 – success;
-1 - fail;

4.47 int StopMask(int channelHandle)
Parameter: int channelHandel: channel handle
Explanation: The function to stop the screen mask provided by PV-250 & 260 serial boards
Return value: 0 – success;

-1 - fail;

4.48 int SetSubEncoderPictureFormat(int channelHandel, PictureFormat_t pictureFormat)
Parameter: int channelHandle channel handle

PictureFormat_t picture Format the size of encoding picture (CIF, QCIF)
Explanation: This function is the encoding format in the sub-channel when setting the double

encoding mode. If cooperated with the latter functions, you can realize the boot
and stop recording in the sub-channel at you will.

Return value: 0 – success;
-1 - fail;

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 17

4.49 int StartSubVideoCapture(int channelHandle)
Parameter: int channelHandle channel handle
Explanation: to start the sub-channel video capture of some channel
Return value: 0 – success;

-1 - fail;

4.50 int StopSubVideoCapture(int channelHandle)
Parameter: int channelHandle channel handle
Explanation: To stop the sub-channel video capture in some channel
Return value: 0 – success;

-1 - fail;

4.51 int SetupDateTime(int channelHandle, SYSTEMTIME *now)
Parameter: int channelHandle channel handle

SYSTEMTIME *now the pointer to SYSTEMTIME
Explanation: Set the time of OSD, it can be used to verify the time on the net.

After calling this function, the function of default local verifying time by
SetOsd() will be shielded.

4.52 int SetInputVideoPosition(int channelHandle, int x, int y)

Parameter: int channelHandle channel handle
 int x the X axis of the coordinate, the defaulted value is 8，
 int y the Y axis of the coordinate, the defaulted value is 2

Explanation: to set the position of video input, some camera preview may have some
black line in the left. (x,y) is original picture coordinate of top left camera
input in system processing pictures. X must be multiple of 2. The parameter
range of (x,y) axis have relationship with the mode of the cameras. If the
appointed value is not matching with the camera input, it may cause the
stillness of the picture or roll in horizontal or vertical direction. Please be
careful to call this function.

Return value: 0 – success;
-1 - fail;

4.53 int SetEncodePictureFormat(int channelHandle, PictureFormat_t PictureFormat) ;

Parameter: int channelHandle channel handle
 PictureFormat_t PictureFormat size of coding image

(4CIF, 2CIF, CIF, QCIF CIFQ and
CIFQCIF)

Explanation: See 4.36 SetEncoderPictureFormat(), to be compatible with PV-250 card.

Linux SDK Technical Manual (Copyright reserved)

User’s Manual for PV-260 serial Linux SDK 18

5． Other explain
5.1 The callback function StreamReadCallBack must be defined as follows：
void StreamReadCallBack(int ChannelNum,

void * DataBuf,
int FrameType ,
int Length,
int FrameNum);

int ChannelNum //channel num (0-n)
void * DataBuf //pointer of frame data
int FrameType //frame type
int Length //frame length
int FrameNum //frame index

you can deal with stream data in this function ,such as record, motion detect and so on.

In this function you can receive frame type as follows:
PktSysHeader system header
(After StartVideoCapture(),DSP will sends a PktSysHeader Frame，every record File

must start by this frame, or the file may not be replayed.)
 PktIFrames I Frame
 PktPFrames P Frame
 PktBBPFrames BBP Frame
 PktAudioFrames Audio Frame

(Those five 5 types frame above is stream data and can be writing to record file.)
 PktMotionDetection motion detection data
 (After StartMotionDetection()，DSP will sends this PktMotionDetection Frame)

PktSFrames
(After CaptureIFrame()，DSP will sends this Iframe.)

