Player SDK Manual

H.264 Player SDK
2005-08-08
Note: If your CPU supports Hyper-Threading Technology, please use the latest version.
Document history

(built 2005-03-03)

Addition: 1. Provide API Pro_PlayM4_GetOriginalFrameCallBack() and Pro_PlayM4_GetFileSpecialAttr() to combine files.

Update: 1. Update the decoding lib to match PV-26x board encoding. Be compatible with old version.

Note:
Old version player SDK can not playback the encoded data of PV-26x board using above system SDK.

(built 2004-09-10)

Addition: 1. Add an info function to inform the user if the image format is changed when in encoding.

Update: 1. The original callback function to inform the user if the image format is changed when in encoding is sheltering.

 2. The defaulted adjusting video parameter interface will not be opened, efficiently save the resources of CPU.

(built 2004-09-01)

 Addition: 1. Add a callback function to inform the user if the image format is changed when in encoding. User can change the size of the interface.

 2. Add get/adjust video parameter interfaces, when in playing back, you can change some parameters like the brightness, contrast, saturation, hue ect to get a better play performance.

 3. Add a function that is to transform the decoded YUV data directly to AVI format files in the DEMO of the player. Please pay attention: at present we can only process the video data, and the transformed AVI files will occupy large rooms of the disk, one second data will need 3.6M. The files needed to be transformed cannot exceed 500 seconds, and it need to install version DivX5.2 Activex to playback the transformed files.

(built 2004-06-26)

 Update: 1. Modify the problem possibly happened when using the network client-end to show the picture

 2. Modify the BUGs possibly happened when using the length to index the files in the last version.

(0616)

 Update: Support the dynamic change of the image format, for example: from 4CIF to CIF, the player will self recognized, need not to reboot the player.

 Modify Pro_PlayM4_SetVerifyCallBack function, which can check whether the frame or data is lost in the file.

(build 0420)

Update: support 4CIF picture format decode.
(build 1230)

Update: support picture format changed on stream. Example, from CIF to QCIF, needn’t restart.

Addition: 1. Adjust wave data.(82)

 2. Verify the data. (83)

 3. Refer to the wave data through a callback function. (84)
(build 0626)

 Update:Support more than 16 ports, the port is now from 0 to 99;

Addition
(78-81):

1. Set/Get the timer that the player sdk using.(78-79)

2. Clear the buffer/Get the buffer remain value.(80-81)
(build 0430)

 Addition(71-77)

1. Split audio and video stream to input(71-74).

2. When using off-screen, you can get the surface DC. And then you cound draw on the surface. If you use overlay surface, you needn’t this DC,becase you can draw on the window directly(75).

3. Get and set file index infomatin(76-77).

(build 0328)
Addition(67-70)

1.Support date stream generated from PV-245, 250 series card

2.Can set up to 4 display regions and support part-region display (can realize part-region enlargement) (68-70)

3.Can set stream type of decode CALLBACK(67)

 Modification:

1.Correct BUG that is originally called I frame back only(see also Pro_PlayM4_SetDecCallBack).

(build 1118)
Modification:

1.sometimes Pro_PlayM4_OpenStream fails with error value PRO_PLAYM4_SYS_NOT_SUPPORT.

(build 1115)
 Addition: (65-66)

1. Set display type (65-66)
modification:

1.Modify some bugs in use

(build 0911)
Addition：(42~63)

1.Some functions to get more information (42~46);

2.Some functions to control source buffer in stream mode (47~59);

3.Some functions to control render buffer (51~52);

4.Some functions to locate the file. And play step back (53~57);

5.A function to throw B frame(58).

6.Some functions to support Multiple-Monitor Systems (59~64);

Modification:

1.The efficiency of the player is improved greatly, and at the same time it can play 9 files (Pentinum4 1.5GHZ), and it can play more if the video is simple.
Notice: The display hardware must supports arbitrary shrinking and stretching of a surface along the x-axis (horizontally) and the y-axis (vertically) for blit operations.

2.Don’t exit the decode thread when the file which is playing come to the end.

3.The current time and frame number witch is got through the functions don’t reference to the state of decoding, but reference to the state of playing.

4.Extend the range of playing speed.

Correction:
1. Capture bitmap is error when video adapter don’t support shrinking and stretching
(build 0703)

Addition :(35-41)
1.Getting error codes

Pro_PlayM4_GetLastError ;

 2.Refreshing display windows
 Pro_PlayM4_RefreshPlay ;

3.Getting the size of image

Pro_PlayM4_GetPictureSize ;

4.Using OVERLAY surface to display
Pro_PlayM4_SetOverlayMode ;

5.Setting image quality
Pro_PlayM4_SetPicQuality ;

6.Opening sound in share mode

Pro_PlayM4_PlaySoundShare ;

7.Closing sound in share mode

Pro_PlayM4_StopSoundShare ;

Modification:

1.Can play step when it is pausing.

2.Support the operations such as pause, fast,, slow and step in STREAM_FILE mode.
3.Support shrinking and stretching with software method when the display hardware doesn’t support it.

Correction:

1. Correct the speed of playing when the video stream is not normal (25 frames per second in PAL).

V1.0:

 (build 0607)

Modified: 1.Improved the image quality.

 (build 0605)

 Addition:

1. Capture picture.

2. Support the user to display audio and video themselves

3. Can set stream mode (the real time mode and the file mode).

4. Get the current time of playing (millisecond).

5. Locate file by time.

6. Getting the total frames of the file and the number of frame which is currently decoding.

7. Getting the current display rate.

8. Get the current version information.

9. Support QCIF format.

Modification:

 1.Improve the playing performance.

 Correction: The problem that the player causes the computer done.

 Addition:

1. Support multi stream to play (According as the computer. Now it can play 4 files at the same time in Pentinum4 1.5GHz).

2. Support stream mode;
Notice: CPU must be Intel Pentinum3 or the advanced one; Don’t need to initialize and release DiretDraw surface ;

 Now the player only support one, and the input parameter of nPort must be 0, but we will support multi in future. Because the displaying need some video adapter capabilities, so if it doesn’t display, try to do these operations as follows: 1) Set the color bits of screen to 32. 2) Replace video adapter.

About display:

The display part of player mainly uses DirectDraw technology. There are 2 ways: 1.build off screen menu and Blt to main menu. 2. build DirectDraw image. The characters of these two ways are: 1)use Off screen menu, merits: Many ways are broadcast and can be set relatively against, not influenced each other. Shortcomings: Greatly affected by display card. If the display card does not support zoom operation, while user needs to do zoom operation (show window and picture primitive size are different), we will use the software to zoom. If it can be very high to enlarge CPU utilization ratio, we have offer an interface Pro_PlayM4_ etCaps. User can test with your display card to see if it supports BLT zoom. Form 1 is a display card that we test for several times; 2) uses OVERLAY picture, the merit: Most display cards support OVERLAY picture , OVERLAY picture supports the zoom of the hardware, When the first way can not get the support of the display card, use OVERLAY picture to get it. Shortcoming: Have exclusive character , only a OVERLAY picture in the activity state at one display card, So at the same time only one channel player uses OVERLAY picture, and if other procedures are using OVERLAY picture , Player can use again OVERLAY picture then, equally, if the player uses OVERLAY picture , Other procedures can not use OVERLAY picture again either
Table1: These are some video adapter which have been tested by us (windows2000)

	Video card model
	Video memory size (M)
	Support color-space conversion
	Support stretch
	Support shrink

	ATI Rage128
	32
	YES
	YES
	YES

	ATI Radeon LE
	32
	YES
	YSE
	YES

	ATI Radeon 7200
	64
	YES
	YES
	YES

	nVidia TNT2 Model64
	16 AND 32
	YES
	YES
	YES

	nVidia TNT2 Pro
	32
	YES
	YES
	YES

	Geforce2 Mx,Mx200,Mx400
	32
	YES
	YES
	YES

	Geforce4 Mx420,Mx440
	32
	YES
	YES
	YES

	Sis630
	16
	NO
	NO
	NO

	Sis305
	32
	YES
	NO
	NO

Notice: nVidia display card needs the newest driver. The old driver may not support lessen function, If you find other display card that are not be tested do not support some functions in use, you had better install the newest driver of display card.
Specification of functions:

1.BOOL Pro_PlayM4_InitDDraw(HWND hWnd);
Description: Initialize DirectDraw surface. Notice: It has expired above version 1.1.

Parameters:

hWnd [in] The window handle of mainframe of the application .

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

2. BOOL Pro_PlayM4_RealeseDDraw();
Description: Release DirectDraw surface. Notice: It has expired above version 1.1.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

3. BOOL Pro_PlayM4_OpenFile(LONG nPort,LPSTR sFileName);
Description: Open the file to play.

Parameters:

nPort [in] The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.
sFileName [in] The file name. Notice: The file size is from 4k to 2G bytes.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

4. BOOL Pro_PlayM4_CloseFile(LONG nPort);
Description: Close the file that has been opened.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.
Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

5. BOOL Pro_PlayM4_Play(LONG nPort, HWND hWnd);
Description: Play the file that has been opened. The size of play menu will be adjusted according to hWnd window when it starts to play. If you want full screen display, you only need to magnify hWnd window to full screen. If it has already played, just adjust current play speed to normal speed.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

hWnd The handle to the window to be displayed in.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

6. BOOL Pro_PlayM4_Stop(LONG nPort);
Description: Stop the file that is playing.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

7. BOOL Pro_PlayM4_Pause(LONG nPort,DWORD nPause);
Description: Pause or continue.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nPause [in] If it is TRUE, then pause the playing file, else then resume the playing file.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.
8. BOOL Pro_PlayM4_Fast(LONG nPort);
Description: Call this function can improve the current play speed by one time, 4 times at most; Return to normal speed and call Pro_PlayM4_Play, from beginning for normal broadcast;
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

9. BOOL Pro_PlayM4_Slow(LONG nPort);
Description: Call the function can slow the current play speed by one time, 4 times at most; Return to normal speed and call Pro_PlayM4_Play(), from beginning for normal broadcast;.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

10. BOOL Pro_PlayM4_SetPlayPos(LONG nPort,float fRelativePos);
Description: Locate to the relative position of the file.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

fRelativePos [in] The percent of the file relative position. It is from 0% to 100%.
Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

11. float Pro_PlayM4_GetPlayPos(LONG nPort);
Description: Get relative position of file.
Return value :

The percent of the file relative position which the file is playing to. It is from 0% to 100%.
12. BOOL Pro_PlayM4_SetFileEndMsg(LONG nPort,HWND hWnd,UINT nMsg);
Description: Register a windows message which will be post when file is end. When received this message, should call Pro_PlayM4_Stop to stop the playing.

Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

HWnd

 [in] The handle to the window to receive this message.

 nMsg

 [in] The message is defined by an application. When received this message, it means that the file which is playing is end.

Return value:

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Pro_PlayM4_GetLastError.

13. BOOL Pro_PlayM4_SetVolume(LONG nPort,WORD nVolume);
Description: Set volume of the sound.
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nVolume

[in] New volume requested for this sound ,range 0-0XFFFF.

14. BOOL Pro_PlayM4_PlaySound(LONG nPort);
Description: Play a sound specified by the given channel. It stops the others automatically.

Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Notice: The default is stopped.
15. BOOL Pro_PlayM4_StopSound();
Description: Stop the sound.
16. BOOL Pro_PlayM4_OpenStream(LONG nPort,PBYTE pFileHeadBuf,DWORD nSize,DWORD nBufPoolSize);
Description: Open the stream to play (similar with open file).

Parameters:

nPort
[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1. pFileHeadBuf [in]The file header which is got from card.

nSize

[in] The size of the file header.

 nBufPoolSize

[in]Specifies the size of the source buffer. The range is from SOURCE_BUF_MIN to SOURCE_BUF_MAX ;

17. BOOL Pro_PlayM4_InputData(LONG nPort,PBYTE pBuf,DWORD nSize);
Description: Input stream data got from card
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1. pBuf [in] Pointer to the buffer containing the data to be written to the source buffer.
nSize

[in] Number of bytes to write to the source buffer.
18. BOOL Pro_PlayM4_CloseStream(LONG nPort);
Description: Close the stream which has been opened.
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

19. int Pro_PlayM4_GetCaps();
Description: Get some capabilities of your system.

Return value: Bit1-8 respectively means the following info (True means support)

 SUPPORT_DDRAW Support DIRECTDRAW. If not, player can’t work.

 SUPPORT_BLT Support BLT operation. If not, player can’t work.

 SUPPORT_BLTFOURCC Display hardware is capable of color-space conversions during blit operations.

 SUPPORT_BLTSHRINKX Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

SUPPORT_BLTSHRINKY Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for blit operations.
SUPPORT_BLTSTRETCHX Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for blit operations.
SUPPORT_BLTSTRETCHY Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for blit operations.

SUPPORT_SSE Supports SSE instruction set. If supports, It will get high performance.

SUPPORT_MMX
Supports MMX instruction set.

20. DWORD Pro_PlayM4_GetFileTime(LONG nPort);
Description: Get total file time in seconds.
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return values:

The total size of the file in seconds.

21. DWORD Pro_PlayM4_GetPlayedTime(LONG nPort);
Description: Get current file time in seconds

Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return values:

The current position in the file in seconds from the beginning.

22. DWORD Pro_PlayM4_GetPlayedFrames(LONG nPort);
Description: Retrieves the frames that have been decompressed.

Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

The current position in the file in frames from the beginning.

23. BOOL Pro_PlayM4_OneByOne(LONG nPort);
Description: Play by single frame. Calls Pro_PlayM4_Play to play the file normally.

Parameters:

nPort
[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

24. BOOL Pro_PlayM4_SetDecCallBack(LONG nPort,void (CALLBACK* DecCBFun)(long nPort,char * pBuf,long nSize,FRAME_INFO * pFrameInfo, long nReserved1,long nReserved2));
Description: Register a callback function to replace replace the displayed part. It is controlled by user. It is called back before Pro_PlayM4_Play and will be invalid automatically when Pro_PlayM4_Stop. Also it needs to be reset before recalling back Pro_PlayM4_Play. Pay attention that the decoded part does not control speed and user just returns from call back function, the decoder will decode the next part of data. To use this function, user must understand video display and vocality play. Please refer to directx development package about the relative knowledge.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

DecCBFun [in] Address of a function to be called, can’t be NULL.

Description of the callback function :

 nPort The channel of player ;

 pBuf Pointer to the buffer that receives the data (audio or video) get from the player.

 nSzie Specifies the number of bytes to be get from the player ;

 pFrameInfo Points to a FRAME_INFO structure to receive the information of the image or sound ;

 nReserved1,nReserved2 Reserved ;

Description of the structure :

typedef struct{
 long nWidth; //width of image in pixels. If it is audio data the width is 0.

 long nHeight; // height of image in pixels , if it is audio data, the height is 0 ;

 long nStamp; //time stamp in milliseconds.

 long nType; //Received data type. It is must be T_AUDIO16，T_RGB32 or T_YV12.

 long nFrameRate; //Suggest the frame rate to display.

}FRAME_INFO;
Description of the macro:

 T_AUDIO16 Audio format (PCM). Sample rate is 8000, Mono, 16 bits per sample.

 T_RGB32 Picture format, RGB32 fromat, 4 bytes per pexels. the format is like as bit values of a bitmap.

 T_UYVY Picture format , uyuv format . “U0-Y0-V0-Y1-U2-Y2-V2-Y3….”，and the first pixel is on top- left.

 T_YV12 Picture format, yv12 format. “Y0-Y1-……”，”V0-V1….”，”U0-U1-…..”.

25. BOOL Pro_PlayM4_SetDisplayCallBack(LONG nPort,void (CALLBACK* DisplayCBFun)(long nPort,char * pBuf,long nSize,long nWidth,long nHeight,long nStamp,long nType,long nReserved));
Description: Register a callback function to capture pictures.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

DisplayCBFun [in] Address of a function to be called, can be NULL ;

Description of the callback function :
 nPort channel.

 pBuf Pointer to the buffer that receives the data of picture get from the player.
 nSize Specifies the number of bytes to be get from the player.

 nWidth width of the picture in pixels.

 nHeight height the picture in pixels.

 nStamp time stamp in milliseconds

 nType Received data type, detail please reference to the macro.

 nReserved Reserved;

26. BOOL
Pro_PLayM4_ConvertToBmpFile(char * pBuf,long nSize,long nWidth,long nHeight,long nType,char *sFileName);
Description: Converts the yuv picture to a bmp file.

Parameters :

pBuf , nSize , nWidht , nHeight , nType as same as the parameters of the callback function of capture picture.
sFileName The file name will to be saved as.(A bmp file)

27. DWORD Pro_PlayM4_GetFileTotalFrames(LONG nPort);
Description: Retrieves the total frames of the file.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.
Return value: The total frames of the file.
28. DWORD Pro_PlayM4_GetCurrentFrameRate(LONG nPort);
Description: Retrieves the current frame rate.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.
Return value: The current frame rate.
29. DWORD Pro_PlayM4_GetPlayedTimeEx(LONG nPort);
Description: Retrieves the current position in the file in milliseconds from the beginning.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value: The current position in the file in milliseconds from the beginning.
30. BOOL
Pro_PlayM4_SetPlayedTimeEx(LONG nPort,DWORD nTime);
Description: Specifies the new position in the file in milliseconds from the beginning;
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value: The position in the file in milliseconds from the beginning.
31. DWORD
Pro_PlayM4_GetCurrentFrameNum(LONG nPort);
Description: Retrieves the current position in the file in frames from the beginning

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

The current position in the file in frames from the beginning.

32. BOOL Pro_PlayM4_SetStreamOpenMode(LONG nPort,DWORD nMode);
explanation: Specifies the stream mode .

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nMode [in] The stream mode. It is STREAME_REALTIME mode (defaulted) or STREAME_FILE mode.

Description of the macro:

 STREAME_REALTIME real-time mode. It is a push mode.

STREAM_FILE file -mode . It is a pull mode.

33. DWORD Pro_PlayM4_GetFileHeadLength();
Description: Retrieves size of the file header. It is usually as the input parameter of the function of Pro_PlayM4_OpenStream.

Return value: The size of the file header.

34. DWORD Pro_PlayM4_GetSdkVersion();
Description: Retrieves the information of version and build.

Return value : The high-order word of the return value specifies the current build value. The low-order word of the return value specifies the current version value. For example: If the return value is 0x06040105 that means the build is 0604 and the version is 1.5.

35. DWORD Pro_PlayM4_GetLastError(LONG nPort) ;

Description: Retrieves the error code.

Return value:

The value specified the error code. The value can be one of the following:
Description of the macro:
PRO_PLAYM4_NOERROR

 no error ;

PRO_PLAYM4_PARA_OVER

 input parameter is invalid ;

 PRO_PLAYM4_ORDER_ERROR The order of the function to be called

is error.

PRO_PLAYM4_TIMER_ERROR

 failed when using multimedia clock.

PRO_PLAYM4_DEC_VIDEO_ERROR

 failed when decoding video data.

PRO_PLAYM4_DEC_AUDIO_ERROR

 failed when decoding audio data.

PRO_PLAYM4_ALLOC_MEMORY_ERROR
 failed when allocating memory.

PRO_PLAYM4_OPEN_FILE_ERROR

 failed when opening file to play.

PRO_PLAYM4_CREATE_OBJ_ERROR

 failed when creating thread or event

PRO_PLAYM4_CREATE_DDRAW_ERROR
failed when creating DirectDraw object.

PRO_PLAYM4_CREATE_OFFSCREEN_ERROR
failed when creating off-screen surface.

PRO_PLAYM4_BUF_OVER

buffer is overflow.
 PRO_PLAYM4_CREATE_SOUND_ERROR

failed when creating audio

device.
PRO_PLAYM4_SET_VOLUME_ERROR

failed when change volume.

PRO_PLAYM4_SUPPORT_FILE_ONLY Can be used only for playing file

PRO_PLAYM4_SUPPORT_STREAM_ONLY Can be used only for playing stream.

PRO_PLAYM4_SYS_NOT_SUPPORT Can’t be supported in the system.

PRO_PLAYM4_FILEHEADER_UNKNOWN
Can’t find the header of the file.

PRO_PLAYM4_VERSION_INCORRECT

The version is different.

PRO_PALYM4_INIT_DECODER_ERROR
Initialize the decoder failed.

PRO_PLAYM4_CHECK_FILE_ERROR

The file is unknown.

PRO_PLAYM4_INIT_TIMER_ERROR
 failed when initializing
multimedia clock.

Pro_PLAYM4_BLT_ERROR
 failed when doing a bit block
transfer(blit).

Pro_PLAYM4_UPDATE_ERROR

failed when updating the OVERLAY surface.

36. BOOL Pro_PlayM4_RefreshPlay(LONG nPort) ;

Description: Refresh display window.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

37. BOOL Pro_PlayM4_SetOverlayMode(LONG nPort,BOOL bOverlay,COLORREF colorKey) ;

Description: Specifies the display surface.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

bOverlay [in] Specifies the display surface. If it is TRUE, the player tries to create overlay surface. If it is FALSE, the player creates off-screen surface.

colorKey [in] If bOverlay is TRUE, It is valid. And the value specifies the color that is covered on the primary surface. We can see the displaying only through this color.

38. BOOL Pro_PlayM4_GetPictureSize(LONG nPort,LONG *pWidth,LONG *pHeight);
Description: Get the original size of the image. Now it is SIF or QSIF.

Parameter :

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 pWidth [out] The width of the image (352 pixels in PAL,SIF)

 pHeight [out] The height of image(288 pixels in PAL,SIF)

39. BOOL Pro_PlayM4_SetPicQuality(LONG nPort,BOOL bHighQuality);
Description: Specifies the quality of image.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 bHighQuality [in] If it is TRUE, high quality. If it is FALSE, low quality.

40. BOOL Pro_PlayM4_PlaySoundShare(LONG nPort);
Description: Plays a sound specified by the channel with share mode. It doesn’t stop others. Notice: It doesn’t support play multi sound in Windows 98 or earlier.

Parameters:

nPort

[in]The channel of the player. It is from 0 to c PRO_PLAYM4_MAX_SUPPORTS-1.

41. BOOL Pro_PlayM4_StopSoundShare(LONG nPort);
Description: Stop a sound specified by the channel. Notice : The player must use the same mode to play or stop the same sound.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

The flowing functions added:

42. LONG Pro_PlayM4_GetStreamOpenMode(LONG nPort);
Description: Get stream mode
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value :

 STREAME_REALTIME or STREAME_FILE .

43. LONG Pro_PlayM4_GetOverlayMode(LONG nPort);
Description: Check the player uses OVERLAY or not.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

 If it is 0, means the display surface is a off-screen surface. Else the display surface is a overlay surface.

44. COLORREF Pro_PlayM4_GetColorKey(LONG nPort);
Description: Retries the color key of the OVERLAY surface.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

The color key value.

45. WORD Pro_PlayM4_GetVolume(LONG nPort);
Description: Retries the volume of the sound.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

 The volume value.

46. BOOL Pro_PlayM4_GetPictureQuality(LONG nPort,BOOL *bHighQuality);
Description: Retrives the quality of the image.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

bHighQuality [out] Pointer to the variable that receives the value of the quality.

47. DWORD Pro_PlayM4_GetSourceBufferRemain(LONG nPort);
Description: Retries the size of the data remained in the source buffer.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value :

The size of the data remained.

48. BOOL Pro_PlayM4_ResetSourceBuffer(LONG nPort);
Description: Clear the source buffer.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

49. BOOL Pro_PlayM4_SetSourceBufCallBack(LONG nPort,DWORD nThreShold,void (CALLBACK * SourceBufCallBack)(long nPort,DWORD nBufSize,DWORD dwUser,void*pResvered),DWORD dwUser,void *pReserved);
Description: Register a callback function to be called when the size of data that the source buffer remained down to the threshold and the flag is valid.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nThreShold [in] a threshold.

 SourceBufCallBack [in] Address of a callback function.

 dwUser [in] user data.

 pResvered [in] reserved .

Description of the callback function:

 void CALLBACK SourceBufCallBack(long nPort,DWORD nBufSize,DWORD dwUser,void*pContext)

Parameter:

 nPort
 The channel of the player
 nBufSize Number of bytes remained of the source buffer.

 dwUser user data .

 pResvered reserved.

50. BOOL Pro_PlayM4_ResetSourceBufFlag(LONG nPort);
Description: Reset CALLBACK symbol location as available state; Source is not certain to called back when it amortized valve value (If user has set call back function), user need reset callback symbol location. And more, the symbol location is set to be invalid after being calling back every time. User can reset call back symbol when being proper. The main purpose of the interface is to avoid being called back repeatedly. (The data swings near to valve value because the player is also reading data when the user inputs data) The callback symbol location is valid in the state of initialization.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

51. BOOL Pro_PlayM4_SetDisplayBuf(LONG nPort,DWORD nNum);
Description: Set size of buffer (namely image buffer after being decoded); This buffer is more important and it effects play fluency and delay. The greater the buffer, the more the fluency in some scope and the longer the delay. User had better consider to increase buffer is the EMS memory is large enough when the file is playing, the windows default is 15 frame, if 25F/S means data of 0.6 second. The windows default is 10 frames when playing stream. If users pursue the most delay to be smallest, they can try to minish this value.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nNum [in] The number of images to be buffered. It is from MIN_DIS_FRAMES to MAX_DIS_FRAMES.

Description of the macro:
 MIN_DIS_FRAMES The minimum number of image to be buffered.

 MAX_DIS_FRAMES The maximum number of image to be buffered.

52. DWORD Pro_PlayM4_GetDisplayBuf(LONG nPort);
Description: Retries the maximum number of images to be buffered.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

Return value:

 The maximum number of images to be buffered.
53. BOOL Pro_PlayM4_SetFileRefCallBack(LONG nPort,

void (__stdcall *pFileRefDone) (DWORD nPort,DWORD nUser),DWORD nUser);
Description: Registers a callback function to be called when the file index is created. When the file is opening, a index for this file will be created in background. It can improve the performance of the seeking. Because some functions need this index, you must call them after the index is created, it means that the callback function is called.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

SetFileRefCallBack [in] Address of a function to be called.

 nUser [in] user data.

Description of the callback function :
 void FileRefDone(DWORD nPort,DWORD nUser)

Parameter :

 nPort the channel of the player.

 nUser user data.

54. BOOL Pro_PlayM4_OneByOneBack(LONG nPort);
Description: single frame replay. Reverse 1 frame after each transfer. This function must be transferred after file index is built. Though SetCurrentFrameNum can also realize single frame replay but the efficiency is much lower. We suggest to use this interface in the course of single replay.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

55. BOOL Pro_PlayM4_SetCurrentFrameNum(LONG nPort,DWORD nFrameNum);
Description: Specifies the current position in the file in frames from the beginning

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 nFrameNum [in] The current frame number.
56. BOOL Pro_PlayM4_GetKeyFramePos(LONG nPort,DWORD nValue, DWORD nType, PFRAME_POS pFramePos);
Description: search the position of key frame before designating position. The image decode must start at key frame. If saved file doesn’t start at key frame, the data before next key frame will be neglected. If user will intercept a section of datas of file, he/she should start at key frame. The end position is not so important and it will lose data of 3 frames at best.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 nValue [in] The current position , it is the time in milliseconds or the number of frame specified by nType .
 nType [in] The value type. It is BY_FRAMENUM or BY_FRAMETIME.

 pFramePos [out] Points to a FRAME_POS structure to receive the information of a key frame.

Description of the structure :
typedef struct{

 long nFilePos;

 //The position of the file.

 long nFrameNum;

 // The number of a frame.

 long nFrameTime;

 //The time stamp of a frame (ms).

}FRAME_POS,*PFRAME_POS;
57. BOOL Pro_PlayM4_GetNextKeyFramePos(LONG nPort,DWORD nValue, DWORD nType, PFRAME_POS pFramePos);
Description: Retries the position of a key frame after the position specified by nValue.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 nValue [in] The current position , it is the time in milliseconds or the number of frame specified by nType .
 nType [in] The value type. It is BY_FRAMENUM or BY_FRAMETIME.

 pFramePos [out] Points to a FRAME_POS structure to receive the information of a key frame.
58 .BOOL Pro_PlayM4_ThrowBFrameNum(LONG nPort,DWORD nNum);
Description: Set frames of non-decoding B frame. Non-decoding B frame can reduce CPU usage rate. If there is no B frame in bit rate, it doesn’t work by setting this function. It can be used on condition of fast playing and supporting multi channels so that CPU is used too often.

Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

nNum [in] The number of B-frame that is not decoded。It is from 0 to 2.

Notice: Attention: 59-64 some function interfaces specially added for multi display cards support. Only operation systems with Windows98 & Windows2000. Windows2000 supports multi display cards and needed installing DirectX6.0 or more advanced edition. If user needn’t environment of supporting multi display cards, these interfaces are dismissal. With regards to multi display cards, please consult correlative file “Multiple-Monitor Systems “ of Microsoft sdk.
59. BOOL Pro_PlayM4_InitDDrawDevice();
Description: enumerate display devices of system
60. void Pro_PlayM4_ReleaseDDrawDevice();
Description: Release resource distributed in the course of enumerating display devices
61. DWORD Pro_PlayM4_GetDDrawDeviceTotalNums();
Description: Retries the total number of display device that are attached to the desktop.

Return value:

 If return 0, it indicates that there is only main displayed device in system. If 0, it indicates that there are many video adapters in system but only one is tied to windows desktop. If return other value, it indicates the number of video adapter tied to desktop of system. In the system with many video adapters, user can designate any video adapter as main display device via setting display attribution.

62. BOOL Pro_PlayM4_SetDDrawDevice(LONG nPort,DWORD nDeviceNum);
Description: Set display card used by play window. Note: This window can display play image only in the corresponding monitor to the display card.
Parameters:

nPort [in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

 nDeviceNum [in] The number of the display device. It is from 0 to the return value of Pro_PlayM4_GetDDrawDeviceTotalNums. If 0, it means the primary display device.

63. BOOL Pro_PlayM4_GetDDrawDeviceInfo(DWORD nDeviceNum,LPSTR lpDriverDescription,DWORD nDespLen,LPSTR lpDriverName ,DWORD nNameLen,HMONITOR *hhMonitor);
Description: Retries the information of the display device and monitor specified by nDeviceNum.
Parameter :

 nDeviceNum [in]The number of the display device. If it is zero, It means the primary display device.

 nDespLen [in]The number of bytes of the lpDriverDescription that has been allocated.
 nNameLen [in] The number of bytes of the lpDriverName that has been allocated.
lpDriverDescription [out] Address of a string that contains the driver description.
lpDriverName [out] Address of a string that contains the driver name.
hhMonitor [out] Handle of the monitor associated with the enumerated DirectDraw object. This parameter is NULL when the enumerated DirectDraw object is for the primary device, a nondisplay device (such as a 3-D accelerator with no 2-D capabilities), or devices not attached to the desktop. For more information, see the function of GetMonitorInfo(Windows API). Notice: the type of HMONITOR is defined in the header file “windef.h” (_WIN32_WINNT >= 0x0500). Please download and install the new Platform sdk. (http://www.microsoft.com/msdownload/platformsdk/sdkupdate/)
64. int Pro_PlayM4_GetCapsEx(DWORD nDDrawDeviceNum);
Description: Get some capabilities of your system.

Parameter :

 nDeviceNum [in]The number of the display device. If it is zero, It means the primary display device.

Return value:

 SUPPORT_DDRAW Support DIRECTDRAW. If not, player can’t work.

 SUPPORT_BLT Support BLT operation. If not, player can’t work.

 SUPPORT_BLTFOURCC Display hardware is capable of color-space conversions during blit operations.

 SUPPORT_BLTSHRINKX Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

SUPPORT_BLTSHRINKY Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for blit operations..

SUPPORT_BLTSTRETCHX Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for blit operations.
SUPPORT_BLTSTRETCHY Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for blit operations.

SUPPORT_SSE Supports SSE instruction set. If supports, It will get high performance.

SUPPORT_MMX

Supports MMX instruction set.

65. BOOL Pro_PlayM4_SetDisplayType(LONG nPort,LONG nType);
Description: Set display type. When displaying small image, it can reduce workload of display card if using DISPLAY_QUARTER. But image quality is lower. Please choose to use DISPLAY_NORMA when displaying normal or large image.

Parameters:

nType
[in]DISPLAY_NORMAL or DISPLAY_QUARTER

Description of macro definition：

DISPLAY_NORMAL Transmit normal resolution data to display card

DISPLAY_QUARTER Transmit 1/4 resolution data to display card

66．long Pro_PlayM4_GetDisplayType(LONG nPort);
Description:Receive display type presently set

Return value: DISPLAY_NORMAL or DISPLAY_QUARTER

67. BOOL __stdcall Pro_PlayM4_SetDecCBStream(LONG nPort,DWORD nStream);
Description: Set call-back stream type

Parameters:

nStream

[in]1. video stream 2.audio stream 3.composited stream

68．BOOL __stdcall Pro_PlayM4_SetDisplayRegion(LONG nPort,DWORD nRegionNum, RECT *pSrcRect, HWND hDestWnd, BOOL bEnable);
Description: Set or increase display regions. Can realize part-region display enlargement

Parameters:

nRegionNum

[in]Display region number 0~(MAX_DISPLAY_WND-1). If nRegionNum is 0, it means to set for main display windows (windows that are set in Pro_PlayM4_Play) and that will neglect location of hDestWnd and bEnable.
pSrcRect
[in]Set in the region where original image will be displayed, for instance: if the resolution of original image is 352*288, the set range of pSrcRect is (0，0，352，288). If pSrcRect=NULL, the whole image will be displayed.

hDestWnd

[in]Set display window. If the window of this region has been set (opend), then neglect the parameter.

bEnable

[in]open (set) or close display region.

69．BOOL __stdcall Pro_PlayM4_RefreshPlayEx(LONG nPort,DWORD nRegionNum);
Description: Refresh to display, as 36. It is an added parameter set for Pro_PlayM4_SetDisplayRegio
Parameter:

nRegionNum

[in]display region serial No..

70．BOOL __stdcall Pro_PlayM4_SetDDrawDeviceEx(LONG nPort,DWORD nRegionNum,DWORD nDeviceNum);

Description: set display card used in play window, as 62. It is an added parameter set for Pro_PlayM4_SetDisplayRegio
Parameters:

nRegionNum

[in]display region serial No.

[in]The video adapter No.

71．BOOL __stdcall Pro_PlayM4_OpenStreamEx(LONG nPort,PBYTE pFileHeadBuf,DWORD nSize,DWORD nBufPoolSize);
Description: Open stream. And the video and audio stream input separately.

Parameters:

nPort
[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

pFileHeadBuf

[in]The file header which is got from card.

nSize

[in] The size of the file header.

 nBufPoolSize

[in]Specifies the size of the source buffer. The range is from SOURCE_BUF_MIN to SOURCE_BUF_MAX ;

72．BOOL __stdcall Pro_PlayM4_CloseStreamEx(LONG nPort);
Description:Close the stream.

73．BOOL __stdcall Pro_PlayM4_InputVideoData(LONG nPort,PBYTE pBuf,DWORD nSize);
Description: Input video stream data got from card
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1. pBuf [in] Pointer to the buffer containing the data to be written to the source buffer.
nSize

[in] Number of bytes to write to the source buffer.

74．BOOL __stdcall Pro_PlayM4_InputAudioData(LONG nPort,PBYTE pBuf,DWORD nSize);
Description: Input audio stream data got from card
Parameters:

nPort

[in]The channel of the player. It is from 0 to PRO_PLAYM4_MAX_SUPPORTS-1.

pBuf

[in] Pointer to the buffer containing the data to be written to the source buffer.
nSize

[in] Number of bytes to write to the source buffer.

75．BOOL __stdcall Pro_PlayM4_RigisterDrawFun(LONG nPort,void (CALLBACK* DrawFun)(long nPort,HDC hDc,LONG nUser),LONG nUser);
Description: Regist a callback fuction to get the off-screen surface device context.If you want to draw text or others on the display window, you must regist it. The call back funtion will be called before bltting each time. The DC is like as the client window DC.

Parameters:

DrawFun

[in] The callback function pointer.

nUser

[in] User data.

Description of the callback function:

void CALLBACK DrawFun(long nPort,HDC hDc,LONG nUser)；

Parameters:

nPort

[out] The channel of the player.

hDc

[out] The off-screen surface DC.

nUser

[out] The user data.

76．BOOL __stdcall Pro_PlayM4_GetRefValue(LONG nPort,BYTE *pBuffer, DWORD *pSize);
Description: Get the index infomatin of the file. You must call this after the FileRefDone be called(see funtion 53).

Parameters:

pBuffer

[in] The buffer to save the index information.

pSize

[in/out] Input the pBuffer size. Output the index information size.

77．BOOL __stdcall Pro_PlayM4_SetRefValue(LONG nPort,BYTE *pBuffer, DWORD nSize);
Description: Set the file index informatin. So you needn’t call Pro_PlayM4_SetFileRefCallBack(funtion 53).

Parameters:

 pBuffer

[in]The file index information.

 nSize

[in]The size of the index information.
78．BOOL __stdcall Pro_PlayM4_SetTimerType(LONG nPort,DWORD nTimerType,DWORD nReserved);
Description: Set the player sdk timer.Note:must be called before open operation.

Parameters:

nTimerType[in] TIMER_1 or TIMER_2, see the MACRO. The default ,from port0-port15 use TIMER_1, ohters use TIMER_2;

nReserved[in] reserved.
Description of the macro:
TIMER_1 Only 16 timers can be uesd per process. But more exact. The old version used.

TIMER_2 No limit.

79．BOOL __stdcall Pro_PlayM4_GetTimerType(LONG nPort,DWORD *pTimerType,DWORD *pReserved);
Description: Get the player sdk timer

Parameters:

pTimerType[out] TIMER_1orTIMER_2;

pReserved[out] reserved.

80．BOOL __stdcall Pro_PlayM4_ResetBuffer(LONG nPort,DWORD nBufType);
Description: Clear the specified buffer.

Parameters:

nBufType[in] buffer type. See the macro.

Description of the macro:
BUF_VIDEO_SRC The source video buffer, only used at stream mode.

BUF_AUDIO_SRC The source audio buffer, only used at stream mode.

BUF_VIDEO_RENDER The video render buffer.

BUF_AUDIO_RENDER The audio render buffer.

81．DWORD __stdcall Pro_PlayM4_GetBufferValue(LONG nPort,DWORD nBufType);
Description:Get the information of the specified buffer.

Parameters:

nBufType[in] buffer type. See the macro.

Return value:If nBufType is BUF_VIDEO_SRC or BUF_AUDIO_SRC return the size of the remain data in the source buffer, else, return the number of frames in the render buffer. One audio frame includes 40ms audio data.
82．BOOL __stdcall Pro_PlayM4_AdjustWaveAudio(LONG nPort,LONG nCoefficient);
Description: Adjust the wave data. It can affect the volume. But it is different from the function Pro_PlayM4_SetVolume. The Pro_PlayM4_SetVolume set the audio card volume. And this function will change the wave data, so noise will be created, but it can adjust volume from each other.
Parameters:

nCoefficient The coefficient. The range from MIN_WAVE_COEF to MAX_WAVE_COEF，0 means no adjust.

83. BOOL __stdcall Pro_PlayM4_SetVerifyCallBack(LONG nPort, DWORD nBeginTime, DWORD nEndTime, void (__stdcall* funVerify)(long nPort, FRAME_POS * pFilePos, DWORD bIsVideo, DWORD nUser), DWORD nUser);
Description: Register a callback function to verify the data. It checks the water marker. If the data have been changed, it will call the function that has been registered. Note: the function must be called before Pro_PlayM4_OpenFile, and you must call the function Pro_PlayM4_SetFileRefCallBack together (see 53).

Parameters:

nBeginTime verify start time (ms);

nEndTime verify stop time(ms);

funVerify the callback function pointer;

nUser user data.

Description of the callback function :

void __stdcall Verify(long nPort, FRAME_POS * pFilePos, DWORD bIsVideo, DWORD nUser)；

nPort port

pFilePos file position.

bIsVideo is video data.1video, 0 audio

nUser user data.

84．BOOL __stdcall Pro_PlayM4_SetAudioCallBack(LONG nPort, void (__stdcall * funAudio)(long nPort, char * pAudioBuf, long nSize, long nStamp, long nType, long nUser), long nUser);
Description: Register a callback function to refer to the wave format data that have been decoded out.

Parameters:

funAudio the callback function pointer.

nUser user data.

Description of the callback function:

void __stdcall Audio(long nPort, char * pAudioBuf, long nSize, long nStamp, long nType, long nUser)
nPort port
pAudioBuf wave data.

nSize wave data size.
nStamp time stamp(ms)
nType audio type, now only T_AUDIO16: 8KHZ, mono, 16bit per sample.

nUser user data.

85. BOOL __stdcall Pro_PlayM4_SetEncTypeChangeCallBack(LONG nPort,void(CALLBACK *funEncChange) (long nPort,long nUser),long nUser);
Description: the callback function to inform the change when the picture format is changed in encoding, please call it before open files.

Input parameters:

funEncChange
callback function;

nUser

user self –definition data
the callback antetype descripton:

void (CALLBACK *funEncChange)(long nPort,long nUser)

nPort
the port of the channel

nUser
user self-definition data

86．BOOL __stdcall Pro_PlayM4_SetColor(LONG nPort, DWORD nRegionNum, int nBrightness, int nContrast, int nSaturation, int nHue);
Description: to set video parameter of the pictures, can be in effect right away;

Input parameters:

nRegionNum：show region, please refer to Pro_PlayM4_SetDisplayRegion；if there is only one show region(the usual condition) it should be set as “0”.

nBrightness:
the brightness, the defaulted is 64, the range is from 0 to 128；

nContrast:
the contrast, the defaulted is 64; the range is from 0 to 128；

nSaturation: the saturation, the defaulted is 64; the range is from 0 to 128；

nHue:

the hue, the defaulted is 64; the range is from 0 to 128；

Note: If all the parameters are all default, it will not adjust the color.

87．BOOL __stdcall Pro_PlayM4_GetColor(LONG nPort, DWORD nRegionNum, int *pBrightness, int *pContrast, int *pSaturation, int *pHue);
Description: to get the corresponding color value, parameters are as above.

88．BOOL __stdcall Pro_PlayM4_SetEncChangeMsg(LONG nPort, HWND hWnd, UINT nMsg)
Description: the message should be sent when the encoding format is change during setting the decode.

Input parameter: hWnd message sending window
 nMsg: the user inputted message, the user will receive this message in hWnd when the playing files come to an end. Parameter WParam in this message will return to nPort.

89．BOOL __stdcall Pro_PlayM4_GetOriginalFrameCallBack(LONG nPort, BOOL bIsChange, BOOL bNormalSpeed, long nStartFrameNum, long nStartStamp, long nFileHeader, void(CALLBACK *funGetOrignalFrame)(long nPort, FRAME_TYPE *frameType, long nUser), long nUser)
Description: create callback function to get the original frame data. You can change the time stamp and no. of each frame. The API is used after the file is opened. Used to combine two files.

Input parameters:

bIsChange: whether change the each frame parameter;

bNormalSpeed: whether get the original frame at normal speed;

nStartFrameNum: If you want to change the original frame number, this is the start frame
number of new file.

nStartStamp: If you want to change the original frame time stamp, this is the start time stamp
of the new file.

nFileHeader: The version information of file header. If the version is not matched, return
failure.

Description of callback function:

void(CALLBACK *funGetOrignalFrame)(long nPort, FRAME_TYPE *frameType, long nUser)

nPort: Channel number;

*frameType: the data frame information

typedef struct{

char *pDataBuf;

//the start address of data frame

long nSize;

//frame size

long nFrameNum;

//frame number

BOOL bIsAudio;

//is audio frame or not

long nReserved;

}FRAME_TYPE;

nUser:
user data.

90. BOOL __stdcall Pro_PlayM4_GetFileSpecialAttr(LONG nPort, DWORD *pTimeStamp, DWORD *pFileNum , DWORD *nFileHeader)
Description:

Get the file last frame number and time stamp. Used after the file is opened and combine with front file.

Output parameters:

pTimeStamp:
the file end time stamp;

pFileNum: the file end frame number;

nfileHeader:
the file header information.

Notes: About the callback function. Because the VB does not support multi-tread, when the callback function is the VB stated function, problem will occur when call the VB function in VC tread. Please refer to the following for detail: Microsoft Knowledge Base Article - Q198607 “PRB: Access Violation in VB Run-Time Using AddressOf ”.

The order of the functions to be called:

Annotation 1 : The flowing functions can be called at any time :
 Pro_PlayM4_GetSdkVersion

Pro_PlayM4_GetFileHeadLength

Pro_PlayM4_SetDisplayCallBack

Pro_PLayM4_ConvertToBmpFile
PlayM4_GetLastError
Pro_PlayM4_SetPicQuality
Annotation 2 : The flowing functions can be called between the file index created and the file closed :

 Pro_PlayM4_GetKeyFramePos
Pro_PlayM4_GetNextKeyFramePos
Pro_PlayM4_GetRefValue
Annotation 3 : The flowing functions can be called between the file index created and the player stopped.
Pro_PlayM4_SetCurrentFrameNum
Pro_PlayM4_OneByOneBack
Finish application

Pro_PlayM4_CloseFile

Pro_PlayM4_CloseStream

Pro_PlayM4_ReleaseDDrawDevice

Pro_PlayM4_Stop

Other functions

Pro_PlayM4_Play

Pro_PlayM4_InputData

Pro_PlayM4_GetFileTotalFrames

Pro_PlayM4_GetFileTime

Pro_PlayM4_GetPictureSize

Pro_PlayM4_GetSourceBufferRemain

Pro_PlayM4_ResetSourceBuffer

Pro_PlayM4_ResetSourceBufFlag

Pro_PlayM4_SetDisplayBuf

Pro_PlayM4_SetFileEndMsg

Pro_PlayM4_OpenFile

Pro_PlayM4_OpenStream

Pro_PlayM4_SetDecCallBack

Pro_PlayM4_SetStreamOpenMode

Pro_PlayM4_GetStreamOpenMode

Pro_PlayM4_SetOverlayMode

Pro_PlayM4_GetDDrawDeviceTotalNums

Pro_PlayM4_GetCapsEx

Pro_PlayM4_SetDDrawDevice

Pro_PlayM4_GetDDrawDeviceInfo

Initialize application

Pro_PlayM4_GetCaps

Pro_PlayM4_SetFileRefCallBack

Pro_PlayM4_InitDDrawDevice

Pro_PlayM4_SetTimerType

Pro_PlayM4_SetVerifyCallBack

Provideo Multimedia Co., Ltd

 Page 33 Total 33
Copyright © 2002. All rights reserved.

